Coder Perfect

How do I find out what a linux block device’s request queue is?


This driver connects the hard disk to the network, and I’m working on it. If I enable two or more hard disks on the machine, the partitions are only looked at and identified on the first one. As a result, if I have one partition on hda and one disk on hdb, there is a partition that can be mounted as soon as I connect hda. As soon as hda1 mounts, it receives a blkid xyz123. However, when I mount hdb1, it also returns the same blkid, indicating that the driver is reading from hda rather than hdb.

So I think I’ve figured out where the driver is going wrong. Below is a debug output with a dump stack that I added to the first location where it appears to be accessing the wrong device.

Here’s where you can find the code:

/*basically, this is just the request_queue processor. In the log output that
  follows, the second device, (hdb) has just been connected, right after hda
  was connected and hda1 was mounted to the system. */

void nblk_request_proc(struct request_queue *q)
struct request *req;
ndas_error_t err = NDAS_OK;


while((req = NBLK_NEXT_REQUEST(q)) != NULL)
    dbgl_blk(8,"processing queue request from slot %d",SLOT_R(req));

    if (test_bit(NDAS_FLAG_QUEUE_SUSPENDED, &(NDAS_GET_SLOT_DEV(SLOT_R(req))->queue_flags)))  {
        printk ("ndas: Queue is suspended\n");
        /* Queue is suspended */

Here’s an example of a log output. I’ve added some notes to assist you understand what’s going on and where the bad call appears to occur.

  /* Just below here you can see "slot" mentioned many times. This is the 
     identification for the network case in which the hd is connected to the 
     network. So you will see slot 2 in this log because the first device has 
     already been connected and mounted. */

  kernel: [231644.155503] BL|4|slot_enable|/driver/block/ctrldev.c:281|adding disk: slot=2, first_minor=16, capacity=976769072|nd/dpcd1,64:15:44.38,3828:10
  kernel: [231644.155588] BL|3|ndop_open|/driver/block/ops.c:233|ing bdev=f6823400|nd/dpcd1,64:15:44.38,3720:10
  kernel: [231644.155598] BL|2|ndop_open|/driver/block/ops.c:247|slot =0x2|nd/dpcd1,64:15:44.38,3720:10
  kernel: [231644.155606] BL|2|ndop_open|/driver/block/ops.c:248|dev_t=0x3c00010|nd/dpcd1,64:15:44.38,3720:10
  kernel: [231644.155615] ND|3|ndas_query_slot|netdisk/nddev.c:791|slot=2 sdev=d33e2080|nd/dpcd1,64:15:44.38,3696:10
  kernel: [231644.155624] ND|3|ndas_query_slot|netdisk/nddev.c:817|ed|nd/dpcd1,64:15:44.38,3696:10
  kernel: [231644.155631] BL|3|ndop_open|/driver/block/ops.c:326|mode=1|nd/dpcd1,64:15:44.38,3720:10
  kernel: [231644.155640] BL|3|ndop_open|/driver/block/ops.c:365|ed open|nd/dpcd1,64:15:44.38,3724:10
  kernel: [231644.155653] BL|8|ndop_revalidate_disk|/driver/block/ops.c:2334|gendisk=c6afd800={major=60,first_minor=16,minors=0x10,disk_name=ndas-44700486-0,private_data=00000002,capacity=%lld}|nd/dpcd1,64:15:44.38,3660:10
  kernel: [231644.155668] BL|8|ndop_revalidate_disk|/driver/block/ops.c:2346|ed|nd/dpcd1,64:15:44.38,3652:10

  /* So at this point the hard disk is added (gendisk=c6...) and the identifications
     all match the network device. The driver is now about to begin scanning the 
     hard drive for existing partitions. the little 'ed', at the end of the previous
     line indicates that revalidate_disk has finished it's job. 

     Also, I think the request queue is indicated by the output dpcd1 near the very
     end of the line. 

     Now below we have entered the function that is pasted above. In the function
     you can see that the slot can be determined by the queue. And the log output
     after the stack dump shows it is from slot 1. (The first network drive that was
     already mounted.) */

        kernel: [231644.155677]  ndas-44700486-0:Pid: 467, comm: nd/dpcd1 Tainted: P           2.6.32-5-686 #1
  kernel: [231644.155711] Call Trace:
  kernel: [231644.155723]  [<fc5a7685>] ? nblk_request_proc+0x9/0x10c [ndas_block]
  kernel: [231644.155732]  [<c11298db>] ? __generic_unplug_device+0x23/0x25
  kernel: [231644.155737]  [<c1129afb>] ? generic_unplug_device+0x1e/0x2e
  kernel: [231644.155743]  [<c1123090>] ? blk_unplug+0x2e/0x31
  kernel: [231644.155750]  [<c10cceec>] ? block_sync_page+0x33/0x34
  kernel: [231644.155756]  [<c108770c>] ? sync_page+0x35/0x3d
  kernel: [231644.155763]  [<c126d568>] ? __wait_on_bit_lock+0x31/0x6a
  kernel: [231644.155768]  [<c10876d7>] ? sync_page+0x0/0x3d
  kernel: [231644.155773]  [<c10876aa>] ? __lock_page+0x76/0x7e
  kernel: [231644.155780]  [<c1043f1f>] ? wake_bit_function+0x0/0x3c
  kernel: [231644.155785]  [<c1087b76>] ? do_read_cache_page+0xdf/0xf8
  kernel: [231644.155791]  [<c10d21b9>] ? blkdev_readpage+0x0/0xc
  kernel: [231644.155796]  [<c1087bbc>] ? read_cache_page_async+0x14/0x18
  kernel: [231644.155801]  [<c1087bc9>] ? read_cache_page+0x9/0xf
  kernel: [231644.155808]  [<c10ed6fc>] ? read_dev_sector+0x26/0x60
  kernel: [231644.155813]  [<c10ee368>] ? adfspart_check_ICS+0x20/0x14c
  kernel: [231644.155819]  [<c10ee138>] ? rescan_partitions+0x17e/0x378
  kernel: [231644.155825]  [<c10ee348>] ? adfspart_check_ICS+0x0/0x14c
  kernel: [231644.155830]  [<c10d26a3>] ? __blkdev_get+0x225/0x2c7
  kernel: [231644.155836]  [<c10ed7e6>] ? register_disk+0xb0/0xfd
  kernel: [231644.155843]  [<c112e33b>] ? add_disk+0x9a/0xe8
  kernel: [231644.155848]  [<c112dafd>] ? exact_match+0x0/0x4
  kernel: [231644.155853]  [<c112deae>] ? exact_lock+0x0/0xd
  kernel: [231644.155861]  [<fc5a8b80>] ? slot_enable+0x405/0x4a5 [ndas_block]
  kernel: [231644.155868]  [<fc5a8c63>] ? ndcmd_enabled_handler+0x43/0x9e [ndas_block]
  kernel: [231644.155874]  [<fc5a8c20>] ? ndcmd_enabled_handler+0x0/0x9e [ndas_block]
  kernel: [231644.155891]  [<fc54b22b>] ? notify_func+0x38/0x4b [ndas_core]
  kernel: [231644.155906]  [<fc561cba>] ? _dpc_cancel+0x17c/0x626 [ndas_core]
  kernel: [231644.155919]  [<fc562005>] ? _dpc_cancel+0x4c7/0x626 [ndas_core]
  kernel: [231644.155933]  [<fc561cba>] ? _dpc_cancel+0x17c/0x626 [ndas_core]
  kernel: [231644.155941]  [<c1003d47>] ? kernel_thread_helper+0x7/0x10

  /* here are the output of the driver debugs. They show that this operation is
     being performed on the first devices request queue. */

  kernel: [231644.155948] BL|8|nblk_request_proc|/driver/block/block26.c:494|processing queue request from slot 1|nd/dpcd1,64:15:44.38,3408:10
  kernel: [231644.155959] BL|8|nblk_handle_io|/driver/block/block26.c:374|struct ndas_slot sd = NDAS GET SLOT DEV(slot 1)
  kernel: [231644.155966] |nd/dpcd1,64:15:44.38,3328:10
  kernel: [231644.155970] BL|8|nblk_handle_io|/driver/block/block26.c:458|case READA call ndas_read(slot=1, ndas_req)|nd/dpcd1,64:15:44.38,3328:10
  kernel: [231644.155979] ND|8|ndas_read|netdisk/nddev.c:824|read io: slot=1, cmd=0, req=x00|nd/dpcd1,64:15:44.38,3320:10

I think this provides sufficient context. “When and where are the request queues assigned?” is perhaps an obvious question at this point.

That’s taken care of a little before the add disk method. The first line of the log report is “adding disk.”

slot->disk = NULL;
slot->queue = blk_init_queue(

This is, as far as I’m aware, the standard procedure. So, let’s get back to my original query. Is it possible to locate the request queue and verify that it is incremented or unique for each new device, or does the Linux kernel use only one queue for each Major number? I’d like to figure out why this driver loads the same queue on two distinct block storages, and whether that’s what’s causing the duplicate blkid during the registration process.

Thank you for taking the time to look into this for me.

Asked by ndasusers

Solution #1

Queue = blk_init_queue(sbd_request, &Device.lock);

Answered by dibin_salher

Solution #2

I’ll explain how to fix the bug that caused me to ask this query. It does not, however, provide an answer to the question of how to locate the device request queue.

The following is found in the code above:


That “SLOT R(req)” was the source of the problem. Otherwise, where should the gendisk device be returned?

#define SLOT_R(_request_) SLOT((_request_)->rq_disk)

This returned the disk, but not the appropriate value for subsequent actions. This function basically kept returning 1 as the extra block devices were loaded. (I believe it was being processed as a boolean.) As a result, all requests were heaped into the disk 1 request queue.

The solution was to use the right disk identification value that had previously been saved in the disk’s private data when it was first added to the system.

Correct identifier definition:
   #define SLOT_R(_request_) ( (int) _request_->rq_disk->private_data )

How the correct disk number was stored.
   slot->disk->queue = slot->queue;
   slot->disk->private_data = (void*) (long) s;  <-- 's' is the disk id
   slot->queue_flags = 0;

Now the correct disk id is returned from private data, so all requests to the correct queue.

However, as previously said, this does not demonstrate how to identify the queue. A rudimentary guess might be:

 x = (int) _request_->rq_disk->queue->id; & 321 for the request queue function in Linux.

Thank you everybody for your assistance!

Answered by ndasusers

Post is based on