Coder Perfect

Full Outer Join (LINQ)

Problem

I have a list of people’s ID numbers and first names, as well as a list of people’s ID numbers and surnames. I’d like to do a full outer join on the two lists because some persons don’t have a first name and others don’t have a surname.

As a result, here are some ideas:

ID  FirstName
--  ---------
 1  John
 2  Sue

ID  LastName
--  --------
 1  Doe
 3  Smith

Should produce:

ID  FirstName  LastName
--  ---------  --------
 1  John       Doe
 2  Sue
 3             Smith

I’m new to LINQ (so forgive me if this is silly) and have come across a number of solutions for ‘LINQ Outer Joins’ that all appear to be left outer joins.

So far, my efforts have been as follows:

private void OuterJoinTest()
{
    List<FirstName> firstNames = new List<FirstName>();
    firstNames.Add(new FirstName { ID = 1, Name = "John" });
    firstNames.Add(new FirstName { ID = 2, Name = "Sue" });

    List<LastName> lastNames = new List<LastName>();
    lastNames.Add(new LastName { ID = 1, Name = "Doe" });
    lastNames.Add(new LastName { ID = 3, Name = "Smith" });

    var outerJoin = from first in firstNames
        join last in lastNames
        on first.ID equals last.ID
        into temp
        from last in temp.DefaultIfEmpty()
        select new
        {
            id = first != null ? first.ID : last.ID,
            firstname = first != null ? first.Name : string.Empty,
            surname = last != null ? last.Name : string.Empty
        };
    }
}

public class FirstName
{
    public int ID;

    public string Name;
}

public class LastName
{
    public int ID;

    public string Name;
}

But this returns:

ID  FirstName  LastName
--  ---------  --------
 1  John       Doe
 2  Sue

I’m not sure what I’m doing incorrectly.

Asked by ninjaPixel

Solution #1

Update 1: a genuinely generalized extension mechanism is now available. FullOuterJoin Update 2: adopting a custom IEqualityComparer for the key type is now optional. Update 3: This implementation is now included in MoreLinq – Thank you so much, folks!

Edited to include FullOuterGroupJoin (ideone). I reused the GetOuter> method, which makes it slightly slower than it could be, but I’m looking for ‘highlevel’ code for now, not bleeding-edge optimized code.

http://ideone.com/O36nWc is where you can see it live.

static void Main(string[] args)
{
    var ax = new[] { 
        new { id = 1, name = "John" },
        new { id = 2, name = "Sue" } };
    var bx = new[] { 
        new { id = 1, surname = "Doe" },
        new { id = 3, surname = "Smith" } };

    ax.FullOuterJoin(bx, a => a.id, b => b.id, (a, b, id) => new {a, b})
        .ToList().ForEach(Console.WriteLine);
}

Prints the output:

{ a = { id = 1, name = John }, b = { id = 1, surname = Doe } }
{ a = { id = 2, name = Sue }, b =  }
{ a = , b = { id = 3, surname = Smith } }

Alternatively, you may provide defaults: http://ideone.com/kG4kqO

    ax.FullOuterJoin(
            bx, a => a.id, b => b.id, 
            (a, b, id) => new { a.name, b.surname },
            new { id = -1, name    = "(no firstname)" },
            new { id = -2, surname = "(no surname)" }
        )

Printing:

{ name = John, surname = Doe }
{ name = Sue, surname = (no surname) }
{ name = (no firstname), surname = Smith }

The term “joining” comes from relational database design:

A group join is a rare occurrence in relational databases[1]:

Also see GroupJoin for more broad background information.

1st (I believe Oracle and MSSQL have proprietary extensions for this)

For this, a generalized ‘drop-in’ Extension class has been created.

internal static class MyExtensions
{
    internal static IEnumerable<TResult> FullOuterGroupJoin<TA, TB, TKey, TResult>(
        this IEnumerable<TA> a,
        IEnumerable<TB> b,
        Func<TA, TKey> selectKeyA, 
        Func<TB, TKey> selectKeyB,
        Func<IEnumerable<TA>, IEnumerable<TB>, TKey, TResult> projection,
        IEqualityComparer<TKey> cmp = null)
    {
        cmp = cmp?? EqualityComparer<TKey>.Default;
        var alookup = a.ToLookup(selectKeyA, cmp);
        var blookup = b.ToLookup(selectKeyB, cmp);

        var keys = new HashSet<TKey>(alookup.Select(p => p.Key), cmp);
        keys.UnionWith(blookup.Select(p => p.Key));

        var join = from key in keys
                   let xa = alookup[key]
                   let xb = blookup[key]
                   select projection(xa, xb, key);

        return join;
    }

    internal static IEnumerable<TResult> FullOuterJoin<TA, TB, TKey, TResult>(
        this IEnumerable<TA> a,
        IEnumerable<TB> b,
        Func<TA, TKey> selectKeyA, 
        Func<TB, TKey> selectKeyB,
        Func<TA, TB, TKey, TResult> projection,
        TA defaultA = default(TA), 
        TB defaultB = default(TB),
        IEqualityComparer<TKey> cmp = null)
    {
        cmp = cmp?? EqualityComparer<TKey>.Default;
        var alookup = a.ToLookup(selectKeyA, cmp);
        var blookup = b.ToLookup(selectKeyB, cmp);

        var keys = new HashSet<TKey>(alookup.Select(p => p.Key), cmp);
        keys.UnionWith(blookup.Select(p => p.Key));

        var join = from key in keys
                   from xa in alookup[key].DefaultIfEmpty(defaultA)
                   from xb in blookup[key].DefaultIfEmpty(defaultB)
                   select projection(xa, xb, key);

        return join;
    }
}

Answered by sehe

Solution #2

I’m not sure if this covers all scenarios, but it appears to be true theoretically. The goal is to perform a left outer join and a right outer join, then combine the results.

var firstNames = new[]
{
    new { ID = 1, Name = "John" },
    new { ID = 2, Name = "Sue" },
};
var lastNames = new[]
{
    new { ID = 1, Name = "Doe" },
    new { ID = 3, Name = "Smith" },
};
var leftOuterJoin =
    from first in firstNames
    join last in lastNames on first.ID equals last.ID into temp
    from last in temp.DefaultIfEmpty()
    select new
    {
        first.ID,
        FirstName = first.Name,
        LastName = last?.Name,
    };
var rightOuterJoin =
    from last in lastNames
    join first in firstNames on last.ID equals first.ID into temp
    from first in temp.DefaultIfEmpty()
    select new
    {
        last.ID,
        FirstName = first?.Name,
        LastName = last.Name,
    };
var fullOuterJoin = leftOuterJoin.Union(rightOuterJoin);

Because it is written in LINQ to Objects, it works exactly as written. The query processor may not support safe navigation or other operations if LINQ to SQL or another is used. To conditionally get the data, you’d have to utilize the conditional operator.

i.e.,

var leftOuterJoin =
    from first in firstNames
    join last in lastNames on first.ID equals last.ID into temp
    from last in temp.DefaultIfEmpty()
    select new
    {
        first.ID,
        FirstName = first.Name,
        LastName = last != null ? last.Name : default,
    };

Answered by Jeff Mercado

Solution #3

I believe that most of these, including the accepted answer, have issues with Linq over IQueryable because they perform too many server round trips and return too much data, or because they perform too much client execution.

I don’t like Sehe’s or similar answers for IEnumerable because they require a lot of memory (a simple 10000000 two list test ran Linqpad out of memory on my 32GB machine).

Also, most of the others don’t actually implement a proper Full Outer Join since they employ a Union with a Right Join instead of a Concat with a Right Anti Semi Join, which removes not only the duplicate inner join rows, but also any proper duplicates that existed in the left or right data.

So here are my Enumerables extensions that handle all of these difficulties, create SQL, and implement the join in LINQ to SQL directly on the server, all while being faster and using less memory than others:

public static class Ext {
    public static IEnumerable<TResult> LeftOuterJoin<TLeft, TRight, TKey, TResult>(
        this IEnumerable<TLeft> leftItems,
        IEnumerable<TRight> rightItems,
        Func<TLeft, TKey> leftKeySelector,
        Func<TRight, TKey> rightKeySelector,
        Func<TLeft, TRight, TResult> resultSelector) {

        return from left in leftItems
               join right in rightItems on leftKeySelector(left) equals rightKeySelector(right) into temp
               from right in temp.DefaultIfEmpty()
               select resultSelector(left, right);
    }

    public static IEnumerable<TResult> RightOuterJoin<TLeft, TRight, TKey, TResult>(
        this IEnumerable<TLeft> leftItems,
        IEnumerable<TRight> rightItems,
        Func<TLeft, TKey> leftKeySelector,
        Func<TRight, TKey> rightKeySelector,
        Func<TLeft, TRight, TResult> resultSelector) {

        return from right in rightItems
               join left in leftItems on rightKeySelector(right) equals leftKeySelector(left) into temp
               from left in temp.DefaultIfEmpty()
               select resultSelector(left, right);
    }

    public static IEnumerable<TResult> FullOuterJoinDistinct<TLeft, TRight, TKey, TResult>(
        this IEnumerable<TLeft> leftItems,
        IEnumerable<TRight> rightItems,
        Func<TLeft, TKey> leftKeySelector,
        Func<TRight, TKey> rightKeySelector,
        Func<TLeft, TRight, TResult> resultSelector) {

        return leftItems.LeftOuterJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector).Union(leftItems.RightOuterJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector));
    }

    public static IEnumerable<TResult> RightAntiSemiJoin<TLeft, TRight, TKey, TResult>(
        this IEnumerable<TLeft> leftItems,
        IEnumerable<TRight> rightItems,
        Func<TLeft, TKey> leftKeySelector,
        Func<TRight, TKey> rightKeySelector,
        Func<TLeft, TRight, TResult> resultSelector) {

        var hashLK = new HashSet<TKey>(from l in leftItems select leftKeySelector(l));
        return rightItems.Where(r => !hashLK.Contains(rightKeySelector(r))).Select(r => resultSelector(default(TLeft),r));
    }

    public static IEnumerable<TResult> FullOuterJoin<TLeft, TRight, TKey, TResult>(
        this IEnumerable<TLeft> leftItems,
        IEnumerable<TRight> rightItems,
        Func<TLeft, TKey> leftKeySelector,
        Func<TRight, TKey> rightKeySelector,
        Func<TLeft, TRight, TResult> resultSelector)  where TLeft : class {

        return leftItems.LeftOuterJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector).Concat(leftItems.RightAntiSemiJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector));
    }

    private static Expression<Func<TP, TC, TResult>> CastSMBody<TP, TC, TResult>(LambdaExpression ex, TP unusedP, TC unusedC, TResult unusedRes) => (Expression<Func<TP, TC, TResult>>)ex;

    public static IQueryable<TResult> LeftOuterJoin<TLeft, TRight, TKey, TResult>(
        this IQueryable<TLeft> leftItems,
        IQueryable<TRight> rightItems,
        Expression<Func<TLeft, TKey>> leftKeySelector,
        Expression<Func<TRight, TKey>> rightKeySelector,
        Expression<Func<TLeft, TRight, TResult>> resultSelector) {

        var sampleAnonLR = new { left = default(TLeft), rightg = default(IEnumerable<TRight>) };
        var parmP = Expression.Parameter(sampleAnonLR.GetType(), "p");
        var parmC = Expression.Parameter(typeof(TRight), "c");
        var argLeft = Expression.PropertyOrField(parmP, "left");
        var newleftrs = CastSMBody(Expression.Lambda(Expression.Invoke(resultSelector, argLeft, parmC), parmP, parmC), sampleAnonLR, default(TRight), default(TResult));

        return leftItems.AsQueryable().GroupJoin(rightItems, leftKeySelector, rightKeySelector, (left, rightg) => new { left, rightg }).SelectMany(r => r.rightg.DefaultIfEmpty(), newleftrs);
    }

    public static IQueryable<TResult> RightOuterJoin<TLeft, TRight, TKey, TResult>(
        this IQueryable<TLeft> leftItems,
        IQueryable<TRight> rightItems,
        Expression<Func<TLeft, TKey>> leftKeySelector,
        Expression<Func<TRight, TKey>> rightKeySelector,
        Expression<Func<TLeft, TRight, TResult>> resultSelector) {

        var sampleAnonLR = new { leftg = default(IEnumerable<TLeft>), right = default(TRight) };
        var parmP = Expression.Parameter(sampleAnonLR.GetType(), "p");
        var parmC = Expression.Parameter(typeof(TLeft), "c");
        var argRight = Expression.PropertyOrField(parmP, "right");
        var newrightrs = CastSMBody(Expression.Lambda(Expression.Invoke(resultSelector, parmC, argRight), parmP, parmC), sampleAnonLR, default(TLeft), default(TResult));

        return rightItems.GroupJoin(leftItems, rightKeySelector, leftKeySelector, (right, leftg) => new { leftg, right }).SelectMany(l => l.leftg.DefaultIfEmpty(), newrightrs);
    }

    public static IQueryable<TResult> FullOuterJoinDistinct<TLeft, TRight, TKey, TResult>(
        this IQueryable<TLeft> leftItems,
        IQueryable<TRight> rightItems,
        Expression<Func<TLeft, TKey>> leftKeySelector,
        Expression<Func<TRight, TKey>> rightKeySelector,
        Expression<Func<TLeft, TRight, TResult>> resultSelector) {

        return leftItems.LeftOuterJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector).Union(leftItems.RightOuterJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector));
    }

    private static Expression<Func<TP, TResult>> CastSBody<TP, TResult>(LambdaExpression ex, TP unusedP, TResult unusedRes) => (Expression<Func<TP, TResult>>)ex;

    public static IQueryable<TResult> RightAntiSemiJoin<TLeft, TRight, TKey, TResult>(
        this IQueryable<TLeft> leftItems,
        IQueryable<TRight> rightItems,
        Expression<Func<TLeft, TKey>> leftKeySelector,
        Expression<Func<TRight, TKey>> rightKeySelector,
        Expression<Func<TLeft, TRight, TResult>> resultSelector) {

        var sampleAnonLgR = new { leftg = default(IEnumerable<TLeft>), right = default(TRight) };
        var parmLgR = Expression.Parameter(sampleAnonLgR.GetType(), "lgr");
        var argLeft = Expression.Constant(default(TLeft), typeof(TLeft));
        var argRight = Expression.PropertyOrField(parmLgR, "right");
        var newrightrs = CastSBody(Expression.Lambda(Expression.Invoke(resultSelector, argLeft, argRight), parmLgR), sampleAnonLgR, default(TResult));

        return rightItems.GroupJoin(leftItems, rightKeySelector, leftKeySelector, (right, leftg) => new { leftg, right }).Where(lgr => !lgr.leftg.Any()).Select(newrightrs);
    }

    public static IQueryable<TResult> FullOuterJoin<TLeft, TRight, TKey, TResult>(
        this IQueryable<TLeft> leftItems,
        IQueryable<TRight> rightItems,
        Expression<Func<TLeft, TKey>> leftKeySelector,
        Expression<Func<TRight, TKey>> rightKeySelector,
        Expression<Func<TLeft, TRight, TResult>> resultSelector) {

        return leftItems.LeftOuterJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector).Concat(leftItems.RightAntiSemiJoin(rightItems, leftKeySelector, rightKeySelector, resultSelector));
    }
}

With Linq to Objects or in the code, the distinction between a Right Anti-Semi-Join and a Left Anti-Semi-Join is mainly inconsequential, but it makes a difference in the final result on the server (SQL) side, removing an unnecessary JOIN.

LinqKit could help with the hand coding of Expression to handle merging an ExpressionFunc>> into a lambda, but it would be wonderful if the language/compiler had included some support for that as well. For completeness, I included the FullOuterJoinDistinct and RightOuterJoin methods, but I have not yet re-implemented FullOuterGroupJoin.

For scenarios when the key is orderable, I built another version of a complete outer join for IEnumerable that is around 50% faster than combining the left outer join with the right anti semi join, at least on small collections. After sorting only once, it goes through each collection.

I have gave another solution for a version that works with EF by substituting a custom expansion for the Invoke.

Answered by NetMage

Solution #4

Here’s an example of an extension method that accomplishes this:

public static IEnumerable<KeyValuePair<TLeft, TRight>> FullOuterJoin<TLeft, TRight>(this IEnumerable<TLeft> leftItems, Func<TLeft, object> leftIdSelector, IEnumerable<TRight> rightItems, Func<TRight, object> rightIdSelector)
{
    var leftOuterJoin = from left in leftItems
        join right in rightItems on leftIdSelector(left) equals rightIdSelector(right) into temp
        from right in temp.DefaultIfEmpty()
        select new { left, right };

    var rightOuterJoin = from right in rightItems
        join left in leftItems on rightIdSelector(right) equals leftIdSelector(left) into temp
        from left in temp.DefaultIfEmpty()
        select new { left, right };

    var fullOuterJoin = leftOuterJoin.Union(rightOuterJoin);

    return fullOuterJoin.Select(x => new KeyValuePair<TLeft, TRight>(x.left, x.right));
}

Answered by Michael Sander

Solution #5

I’m guessing @sehe’s technique is more powerful, but until I learn more about it, I’m relying on @MichaelSander’s extension. I changed it to reflect the built-in Enumerable’s syntax and return type. Here’s how to use the Join() technique. In response to @cadrell0’s comment beneath @JeffMercado’s answer, I added the “distinct” suffix.

public static class MyExtensions {

    public static IEnumerable<TResult> FullJoinDistinct<TLeft, TRight, TKey, TResult> (
        this IEnumerable<TLeft> leftItems, 
        IEnumerable<TRight> rightItems, 
        Func<TLeft, TKey> leftKeySelector, 
        Func<TRight, TKey> rightKeySelector,
        Func<TLeft, TRight, TResult> resultSelector
    ) {

        var leftJoin = 
            from left in leftItems
            join right in rightItems 
              on leftKeySelector(left) equals rightKeySelector(right) into temp
            from right in temp.DefaultIfEmpty()
            select resultSelector(left, right);

        var rightJoin = 
            from right in rightItems
            join left in leftItems 
              on rightKeySelector(right) equals leftKeySelector(left) into temp
            from left in temp.DefaultIfEmpty()
            select resultSelector(left, right);

        return leftJoin.Union(rightJoin);
    }

}

You might use it like this in the example:

var test = 
    firstNames
    .FullJoinDistinct(
        lastNames,
        f=> f.ID,
        j=> j.ID,
        (f,j)=> new {
            ID = f == null ? j.ID : f.ID, 
            leftName = f == null ? null : f.Name,
            rightName = j == null ? null : j.Name
        }
    );

Given its popularity, I believe I’ll be migrating to @sehe’s logic in the future as I learn more. But even then, I’ll have to tread carefully since, if at all possible, I believe it’s critical to have at least one overload that matches the syntax of the present “.Join()” method, for two reasons:

Because I’m still learning about generics, extensions, Func statements, and other aspects, any comment is appreciated.

EDIT: It didn’t take long for me to understand there was something wrong with my code. In LINQPad, I was doing a.Dump() and looked at the result type. I tried to match it because it was just an IEnumerable. However, when I tried to use.Where() or.Select() on my extension, I received the following error: “‘System Collections.IEnumerable’ does not contain a definition for ‘Select’ and…” So, while I was able to match the input syntax of.Join(), I was unable to match the return behavior.

EDIT: Added “TResult” to the function’s return type. That was something I missed while reading the Microsoft piece, and it makes perfect sense. With this adjustment, it appears that the return behavior is now in accordance with my objectives.

Answered by pwilcox

Post is based on https://stackoverflow.com/questions/5489987/linq-full-outer-join